
TotalPerspectiveVortex Documentation
Release 2.3.3

Galaxy and GVL projects

Mar 26, 2024

CONTENTS:

1 Shared database 3
1.1 Installation . 3
1.2 TPV by example . 5
1.3 Advanced Topics . 14
1.4 Concepts and Organisation . 17
1.5 Inner workings . 20
1.6 Shell Commands . 22
1.7 Migration Guide . 24
1.8 FAQ . 25
1.9 Indices and tables . 25

i

ii

TotalPerspectiveVortex Documentation, Release 2.3.3

Dynamic rules for routing Galaxy entities to destinations

TotalPerspectiveVortex (TPV) is a plugin for the Galaxy application that can route entities (Tools, Users, Roles) to
appropriate destinations with appropriate resource alloations (cores, gpus, memory), based on a configurable yaml file.
For example, it could allocate 8 cores and 32GB of RAM to a bwa-mem job, and route it to a Slurm cluster, while
allocating 2 cores and 4GB of RAM to an upload job, and route it to a local runner. These rules can also be shared
community-wide, imported at runtime by any Galaxy deployment, and overridden locally when necessary.

TPV can be plugged into Galaxy via job_conf.yml. TPVs configuration file specifies how entities (tools, users, roles)
should be allocated resources (cores, gpus, memory) and in complex environments with multiple job destinations,
where to map the resulting jobs to (through a flexible tagging system). Destinations can have arbitrary scheduling tags
defined, and each entity can express a preference or aversion to specific scheduling tags. This tagging affects how jobs
are routed to destinations. In addition, admins can also plugin arbitrary python based rules for making more complex
decisions, as well as custom ranking functions for choosing between matching destinations.

CONTENTS: 1

https://galaxyproject.org/

TotalPerspectiveVortex Documentation, Release 2.3.3

2 CONTENTS:

CHAPTER

ONE

SHARED DATABASE

A shared database of TPV rules are maintained in: https://github.com/galaxyproject/tpv-shared-database/ These rules
are based on typical settings used in the usegalaxy.* federation, which you can override based on local resource avail-
ability.

1.1 Installation

1.1.1 Basic steps

1. pip install total-perspective-vortex into Galaxy’s python virtual environment

2. Create the TPV job mapping yaml file, specifying resource allocation and job routing preferences

3. Configure Galaxy’s job_conf.yml to use TPV

4. Submit jobs as usual

Configuring Galaxy

1. First install TPV into your Galaxy virtual environment.

TPV is a conditional dependency of Galaxy since Galaxy 22.05. If TPV is enabled in your Galaxy job configu-
ration, it will automatically be installed into Galaxy’s virtualenv. Otherwise, or if you wish to upgrade to a newer
version of TPV, you can use the process below to install manually:

cd <galaxy_home>
source .venv/bin/activate
pip install --upgrade total-perspective-vortex

2. Edit your job_conf.yml in the <galaxy_home>/config folder and add the highlighted sections to it.

You can refer to a local file for the tpv_config_files setting, or alternatively, provider a link to a remote url.

1 runners:
2 local:
3 load: galaxy.jobs.runners.local:LocalJobRunner
4 workers: 4
5 drmaa:
6 load: galaxy.jobs.runners.drmaa:DRMAAJobRunner
7 k8s:
8 load: galaxy.jobs.runners.kubernetes:KubernetesJobRunner

(continues on next page)

3

https://github.com/galaxyproject/tpv-shared-database/

TotalPerspectiveVortex Documentation, Release 2.3.3

(continued from previous page)

9

10 handling:
11 assign:
12 - db-skip-locked
13

14 execution:
15 default: tpv_dispatcher
16 environments:
17 tpv_dispatcher:
18 runner: dynamic
19 type: python
20 function: map_tool_to_destination
21 rules_module: tpv.rules
22 tpv_config_files:
23 - https://gxy.io/tpv/db.yml
24 - config/tpv_rules_local.yml
25 local:
26 runner: local
27 k8s_environment:
28 runner: k8s
29 docker_enabled: true

3. Add your own custom rules to your local tpv_config_file, following instructions in the next section.

1.1.2 Combining multiple remote and local configs

TPV allows rules to be loaded from remote or local sources.

1 tpv_dispatcher:
2 runner: dynamic
3 type: python
4 function: map_tool_to_destination
5 rules_module: tpv.rules
6 tpv_config_files:
7 - https://gxy.io/tpv/db.yml
8 - config/tpv_rules_australia.yml

The config files listed first are overridden by config files listed later. The normal rules of inheritance apply. This allows
a central database of common rules to be maintained, with individual, site-specific overrides.

1.1.3 Standalone Installation

If you wish to install TPV outside of Galaxy’s virtualenv (e.g. to use the tpv lint command locally or in a CI/CD
pipeline), use the [cli] pip requirement specifier to make sure the necessary Galaxy dependency packages are also
installed. This should not be used in the Galaxy virtualenv:

$ pip install 'total-perspective-vortex[cli]'

4 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

1.2 TPV by example

1.2.1 Simple configuration

The simplest possible example of a useful TPV config might look like the following:

1 tools:
2 toolshed.g2.bx.psu.edu/repos/iuc/hisat2/.*:
3 cores: 12
4 mem: cores * 4
5 gpus: 1
6

7 destinations:
8 slurm:
9 runner: slurm

10 max_accepted_cores: 16
11 max_accepted_mem: 64
12 max_accepted_gpus: 2
13 general_pulsar_1:
14 runner: pulsar_1
15 max_accepted_cores: 8
16 max_accepted_mem: 32
17 max_accepted_gpus: 1

Here, we define one tool and its resource requirements, the destinations available, and the total resources available at
each destination (optional). The tools are matched by tool id, and can be a regular expression. Note how resource
requirements can also be computed as python expressions. If resource requirements are defined at the destination, TPV
will check whether the job will fit. For example, hisat2 will not schedule on general_pulsar_1 as it has insufficient
cores. If resource requirements are omitted in the tool or destination, it is considered a match. Note that TPV only
considers destinations defined in its own config file, and ignores destinations in job_conf.yml.

1.2.2 Default inheritance

Inheritance provides a mechanism for an entity to inherit properties from another entity, reducing repetition.

1 global:
2 default_inherits: default
3

4 tools:
5 default:
6 cores: 2
7 mem: 4
8 params:
9 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024}"
10 toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.1.0+galaxy7:
11 cores: 12
12 mem: cores * 4
13 gpus: 1

The global section is used to define global TPV properties. The default_inherits property defines a “base class” for all
tools to inherit from.

1.2. TPV by example 5

TotalPerspectiveVortex Documentation, Release 2.3.3

In this example, if the bwa tool is executed, it will match the default tool, as there are no other matches, thus inheriting
its resource requirements. The hisat2 tool will also inherit these defaults, but is explicitly overriding cores, mem and
gpus. It will inherit the nativeSpecification param.

1.2.3 Explicit inheritance

Explicit inheritance provides a mechanism for exerting greater control over the inheritance chain.

1 global:
2 default_inherits: default
3

4 tools:
5 default:
6 cores: 2
7 mem: 4
8 params:
9 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024}"
10 toolshed.g2.bx.psu.edu/repos/iuc/hisat2/.*:
11 cores: 12
12 mem: cores * 4
13 gpus: 1
14 .*minimap2.*:
15 inherits: toolshed.g2.bx.psu.edu/repos/iuc/hisat2/.*:
16 cores: 8
17 gpus: 0

In this example, the minimap2 tool explicitly inherits requirements from the hisat2 tool, which in turn inherits the
default tool. There is no limit to how deep the inheritance hierarchy can be.

1.2.4 Scheduling tags

Scheduling tags provide a means by which to control how entities match up, and can be used to route jobs to preferred
destinations, or to explicitly control which users can execute which tools, and where.

1 tools:
2 default:
3 cores: 2
4 mem: 4
5 params:
6 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024}"
7 scheduling:
8 reject:
9 - offline

10 toolshed.g2.bx.psu.edu/repos/iuc/hisat2/.*:
11 cores: 4
12 mem: cores * 4
13 gpus: 1
14 scheduling:
15 require:
16 prefer:

(continues on next page)

6 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

(continued from previous page)

17 - highmem
18 accept:
19 reject:
20 toolshed.g2.bx.psu.edu/repos/iuc/minimap2/.*:
21 cores: 4
22 mem: cores * 4
23 gpus: 1
24 scheduling:
25 require:
26 - highmem
27

28 destinations:
29 slurm:
30 runner: slurm
31 max_accepted_cores: 16
32 max_accepted_mem: 64
33 max_accepted_gpus: 2
34 scheduling:
35 prefer:
36 - general
37

38 general_pulsar_1:
39 runner: pulsar_1
40 max_accepted_cores: 8
41 max_accepted_mem: 32
42 max_accepted_gpus: 1
43 scheduling:
44 prefer:
45 - highmem
46 reject:
47 - offline

In this example, all tools reject destinations marked as offline. The hisat2 tool expresses a preference for highmem, and
inherits the rejection of offline tags. Inheritance can be used to override scheduling tags. For example, the minimap2
tool inherits hisat2, but now requires a highmem tag, instead of merely preferring it.

The destinations themselves can be tagged in similar ways. In this case, the general_pulsar_1 destination also prefers
the highmem tag, and thus, the hisat2 tool would schedule there. However, general_pulsar_1 also rejects the offline tag,
and therefore, the hisat2 tool cannot schedule there. Therefore, it schedules on the only available destination, which is
slurm.

The minimap2 tool meanwhile requires highmem, but rejects offline tags, which leaves it nowhere to schedule. This
results in a JobMappingException being thrown.

A full table of how scheduling tags match up can be found in the Scheduling section.

These TPV defined scheduling tags should be contrasted with Galaxy’s destination level handler tags:
https://github.com/galaxyproject/galaxy/blob/0a0d68b7feed5e303ed762f6586ea9757219c6f7/lib/galaxy/config/
sample/job_conf.sample.yml#L1037 Galaxy handler tags can be defined as simply tags at the destination.

1.2. TPV by example 7

https://github.com/galaxyproject/galaxy/blob/0a0d68b7feed5e303ed762f6586ea9757219c6f7/lib/galaxy/config/sample/job_conf.sample.yml#L1037
https://github.com/galaxyproject/galaxy/blob/0a0d68b7feed5e303ed762f6586ea9757219c6f7/lib/galaxy/config/sample/job_conf.sample.yml#L1037

TotalPerspectiveVortex Documentation, Release 2.3.3

1.2.5 Rules

Rules provide a means by which to conditionally change entity requirements.

1 tools:
2 default:
3 cores: 2
4 mem: cores * 3
5 rules:
6 - id: my_overridable_rule
7 if: input_size < 5
8 fail: We don't run piddling datasets of {input_size}GB
9 bwa:

10 scheduling:
11 require:
12 - pulsar
13 rules:
14 - id: my_overridable_rule
15 if: input_size < 1
16 fail: We don't run piddling datasets
17 - if: input_size <= 10
18 cores: 4
19 mem: cores * 4
20 execute: |
21 from galaxy.jobs.mapper import JobNotReadyException
22 raise JobNotReadyException()
23 - if: input_size > 10 and input_size < 20
24 scheduling:
25 require:
26 - highmem
27 - if: input_size >= 20
28 fail: Input size: {input_size} is too large shouldn't run

The if clause can contain arbitrary python code, including multi-line python code. The only requirement is that
the last statement in the code block must evaluate to a boolean value. In this example, the input_size variable is an
automatically available contextual variable which is computed by totalling the sizes of all inputs to the job. Additional
available variables include app, job, tool, and user.

If the rule matches, the properties of the rule override the properties of the tool. For example, if the input_size is 15,
the bwa tool will require both pulsar and highmem tags.

Rules can be overridden by giving them an id. For example, the default for all tools is to reject input sizes < 5 by using
the my_overridable_rule rule. We override that for the bwa tool by specifically referring to the inherited rule by id. If
no id is specified, an id is auto-generated and no longer overridable.

Note the use of the {input_size} variable in the fail message. The general rule is that all non-string expressions are
evaluated as python code blocks, while string variables are evaluated as python f-strings.

The execute block can be used to create arbitrary side-effects if a rule matches. The return value of an execute block is
ignored.

8 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

1.2.6 User and Role Handling

Scheduling rules can also be expressed for users and roles.

1 tools:
2 default:
3 scheduling:
4 require: []
5 prefer:
6 - general
7 accept:
8 reject:
9 - pulsar

10 rules: []
11 dangerous_interactive_tool:
12 cores: 8
13 mem: 8
14 scheduling:
15 require:
16 - authorize_dangerous_tool
17 users:
18 default:
19 scheduling:
20 reject:
21 - authorize_dangerous_tool
22 fairycake@vortex.org:
23 cores: 4
24 mem: 16
25 scheduling:
26 accept:
27 - authorize_dangerous_tool
28 prefer:
29 - highmem
30

31 roles:
32 training.*:
33 cores: 5
34 mem: 7
35 scheduling:
36 reject:
37 - pulsar

In this example, if user fairycake@vortex.org attempts to dispatch a dangerous_interactive_tool job, the requirements
for both entities would be combined. Most requirements would simply be merged, such as env vars and job params.
However, when combining gpus, cores and mem, the lower of the two values are used. In this case, the combined entity
would have a core value of 4 and a mem value of 8. This allows training users for example, to be forced to use a lower
number of cores than usual.

In addition, for these entities to be combined, the scheduling tags must also be compatible. In this instance the
dangerous_interactive_tool requires the authorize_dangerous_tool tag, which all users by default reject. Therefore,
most users cannot run this tool by default. However, fairycake@vortex.org overrides that and accepts the autho-
rize_dangerous_tool allowing only that user to run the dangerous tool.

Roles can be matched in this exact way. Rules can also be defined at the user and role level.

1.2. TPV by example 9

TotalPerspectiveVortex Documentation, Release 2.3.3

1.2.7 Metascheduling

Custom rank functions can be used to implement metascheduling capabilities. A rank function is used to select the best
matching destination from a list of matching destinations. If no rank function is provided, the default rank function
simply chooses the most preferred destination out of the available destinations.

When more sophisticated control over scheduling is required, a rank function can be implemented through custom
python code.

1 tools:
2 default:
3 cores: 2
4 mem: 8
5 rank: |
6 import requests
7

8 params = {
9 'pretty': 'true',

10 'db': 'pulsar-test',
11 'q': 'SELECT last("percent_allocated") from "sinfo" group by "host"'
12 }
13

14 try:
15 response = requests.get('http://stats.genome.edu.au:8086/query', params=params)
16 data = response.json()
17 cpu_by_destination = {s['tags']['host']:s['values'][0][1] for s in data.get(

→˓'results')[0].get('series', [])}
18 # sort by destination preference, and then by cpu usage
19 candidate_destinations.sort(key=lambda d: (-1 * d.score(entity), cpu_by_

→˓destination.get(d.dest_name)))
20 final_destinations = candidate_destinations
21 except Exception:
22 log.exception("An error occurred while querying influxdb. Using a weighted random␣

→˓candidate destination")
23 final_destinations = helpers.weighted_random_sampling(candidate_destinations)
24 final_destinations

In this example, the rank function queries a remote influx database to find the least loaded destination, The matching
destinations are available to the rank function through the candidate_destinations contextual variable. Therefore, in
this example, the candidate destinations are first sorted by the best matching destination (score is the default ranking
function), and then sorted by CPU usage per destination, obtained from the influxdb query.

Note that the final statement in the rank function must be the list of sorted destinations.

1.2.8 Custom contexts

In addition to the automatically provided context variables (see Concepts and Organisation), TPV allows you to define
arbitrary custom variables, which are then available whenever an expression is evaluated. Contexts can be defined both
globally or at the level of each entity, with entity level context variables overriding global ones.

1 global:
2 default_inherits: default
3 context:
4 ABSOLUTE_FILE_SIZE_LIMIT: 100

(continues on next page)

10 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

(continued from previous page)

5 large_file_size: 10
6 _a_protected_var: "some value"
7

8 tools:
9 default:

10 context:
11 additional_spec: --my-custom-param
12 cores: 2
13 mem: 4
14 params:
15 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024} {additional_spec}"
16 rules:
17 - if: input_size >= ABSOLUTE_FILE_SIZE_LIMIT
18 fail: Job input: {input_size} exceeds absolute limit of: {ABSOLUTE_FILE_SIZE_

→˓LIMIT}
19 - if: input_size > large_file_size
20 cores: 10
21

22 toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.1.0+galaxy7:
23 context:
24 large_file_size: 20
25 additional_spec: --overridden-param
26 mem: cores * 4
27 gpus: 1

In this example, three global context variables are defined, which are made available to all entities. Variable names
follow Python conventions, where all uppercase variables indicate constants that cannot be overridden. Lower case
indicates a public variable that can be overridden and changed, even across multiple TPV config files. An underscore
indicates a protected variable that can be overridden within the same file, but not across files.

Additionally, the tool defaults section defines a context variable named additional_spec, which is only available to
inheriting tools.

If we were to dispatch a job, say bwa, with an input_size of 15, the large file rule in the defaults section would kick
in, and the number of cores would be set to 10. If we were to dispatch a hisat2 job with the same input size however,
the large_file_size rule would not kick in, as it has been overridden to 20. The main takeaway from this example is
that variables are bound late, and therefore, rules and params can be crafted to allow inheriting tools to conveniently
override values, even across files. While this capability can be powerful, it needs to be treated with the same care as
any global variable in a programming language.

1.2.9 Multiple matches

If multiple regular expressions match, the matches are applied in order of appearance. Therefore, the convention is to
specify more general rule matches first, and more specific matches later. This matching also applies across multiple
TPV config files, again based on order of appearance.

1 tools:
2 default:
3 cores: 2
4 mem: 4
5 params:

(continues on next page)

1.2. TPV by example 11

TotalPerspectiveVortex Documentation, Release 2.3.3

(continued from previous page)

6 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=
→˓{mem*1024}"

7

8 toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/.*:
9 mem: cores * 4

10 gpus: 1
11

12 toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.1.0+galaxy7:
13 env:
14 MY_ADDITIONAL_FLAG: "test"

In this example, dispatching a hisat2 job would result in a mem value of 8, with 1 gpu. However, dispatching the
specific version of 2.1.0+galaxy7 would result in the additional env variable, with mem remaining at 8.

1.2.10 Job Environment

As seen in the previous example, it is possible to specify environment variables that will be set in the job’s executing
environment. It is also possible to source environment files and execute commands, using the same syntax as in Galaxy’s
job_conf.yml, by specifying env as a list instead of a dictionary.

1 tools:
2 default:
3 cores: 2
4 mem: 4
5 params:
6 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024}"
7 env:
8 - execute: echo "Don't Panic!"
9

10 toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/.*:
11 mem: cores * 4
12 gpus: 1
13 env:
14 - name: MY_ADDITIONAL_FLAG
15 value: "arthur"
16 - file: /galaxy/tools/hisat2.env
17

18 toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.1.0+galaxy7:
19 inherits: toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/.*:
20 env:
21 MY_ADDITIONAL_FLAG: "zaphod"

In this example, all jobs will execute the command echo "Don't Panic!". All versions of hisat2 will have
$MY_ADDITIONAL_FLAG set and will source the file /galaxy/tools/hisat2.env, but version 2.1.0+galaxy7 will
have the value zaphod set for $MY_ADDITIONAL_FLAG instead of the hisat2 default of arthur.

12 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

1.2.11 Job Resubmission

TPV has explict support for job resubmissions, so that advanced control over job resubmission is possible.

1 tools:
2 default:
3 cores: 2
4 mem: 4 * int(job.destination_params.get('SCALING_FACTOR', 1)) if job.destination_

→˓params else 1
5 params:
6 SCALING_FACTOR: "{2 * int(job.destination_params.get('SCALING_FACTOR', 2)) if job.

→˓destination_params else 2}"
7 resubmit:
8 with_more_mem_on_failure:
9 condition: memory_limit_reached and attempt <= 3

10 destination: tpv_dispatcher

In this example, we have defined a resubmission handler that resubmits the job if the memory limited is reached. Note
that the resubmit section looks exactly the same as Galaxy’s, except that it follows a dictionary structure instead of
being a list. Refer to the Galaxy job configuration docs for more information on resubmit handlers. One twist in this
example is that we automatically increase the amount of memory provided to the job on each resubmission. This is
done by setting the SCALING_FACTOR param, which is a custom parameter which we have chosen for this example,
that we increase on each resubmission. Since each resubmission’s destination is TPV, the param is re-evaluated on
each resubmission, and scaled accordingly. The memory is allocated based on the scaling factor, which therefore, also
scales accordingly.

1.2.12 Using the shared database

A shared database of resource requirements and rules are maintained in:

https://github.com/galaxyproject/tpv-shared-database/

This shared database relieves you of the burden of figuring out what resources are typically required by tools, with
recommended settings based on those used in the usegalaxy.* federation. You can override these settings based on
local resource availability. The shared database can be integrated through your local job_conf.yml as follows:

1 tpv_dispatcher:
2 runner: dynamic
3 type: python
4 function: map_tool_to_destination
5 rules_module: tpv.rules
6 tpv_config_files:
7 - https://gxy.io/tpv/db.yml
8 - config/my_local_overrides.yml # optional

1.2. TPV by example 13

https://github.com/galaxyproject/tpv-shared-database/

TotalPerspectiveVortex Documentation, Release 2.3.3

1.2.13 Clamping resources

Entities can define, min_{cores|gpus|mem} and max_{cores|gpu|mem} as a means of clamping the maximum resources
that will be allocated to a tool, even if it requests a higher amount. For example, if a tool requests 16 cores, but a user
is defined with max_cores: 4, then the tool’s resource requirement would be clamped down to that maximum amount.
This can be useful for allocating lower resources to training users for example, who only use toy datasets that do not
require the full core allocation. Conversely, some users can be allocated more resources by using min_cores.

In addition, clamping resources can also be useful when using the TPV shared database. For example, the canu tool
has a 96GB recommended memory requirement, which your local cluster may not have. However, you may still want
to allow the tool to run, albeit with lower resources. You can of course, locally override the canu tool and allocated
less resources, but this can be tedious to do for a large number of tools. All you may really want, is to restrict all tools
to use the maximum your cluster can support. You can achieve that effect as follows:

1 destinations:
2 slurm:
3 runner: slurm
4 max_accepted_cores: 32
5 max_accepted_mem: 196
6 max_accepted_gpus: 2
7 max_cores: 16
8 max_mem: 64
9 max_gpus: 1

In the example above, we mark the slurm destination as accepting jobs up to 196GB in size, and therefore, the canu
tool, which required 96GB, would successfully schedule there. However, we forcibly clamp the job’s max_mem to
64GB, which is the actual memory your cluster can support. In this way, all tools in the shared database can still run,
provided they do not exceed the specified max_accepted values.

1.2.14 Giving a parameterized, custom name to a destination

If you need to provide a parameterized name for a destination, you can do so by using the destination_name_override
property.

1 destinations:
2 slurm:
3 runner: slurm
4 destination_name_override: "my-dest-with-{cores}-cores-{mem}-mem"

1.3 Advanced Topics

1.3.1 Expressions

Most TPV properties can be expressed as Python expressions. The rule of thumb is that all string expressions are
evaluated as python f-strings, and all integers or boolean expressions are evaluated as python code blocks. For example,
cpu, cores and mem are evaluated as python code blocks, as they evaluate to integer/float values. However, env and
params are evaluated as f-strings, as they result in string values. This is to improve the readability and syntactic
simplicity of TPV config files.

At the point of evaluating these functions, there is an evaluation context, which is a default set of variables that are
available to that expression. The following default variables are available to all expressions:

14 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

Default evaluation context

Variable Description
app the Galaxy App object
tool the Galaxy tool object
user the current Galaxy user object
job the Galaxy job object
mapper the TPV mapper object, which can be used to access parsed TPV configs
entity the TPV entity being currently evaluated. Can be a combined entity.
self an alias for the current TPV entity.

Custom evaluation contexts

These are user defined context values that can be defined globally, or locally at the level of each entity. Any defined
context value is available as a regular variable at the time the entity is evaluated.

Special evaluation contexts

In addition to the defaults above, additional context variables are available at different steps.

gpu, core and mem expressions - these are evaluated in order, and thus can be referred to in that same order. For
example, gpu expressions cannot refer to core and mem, as they have not been evaluated yet. cpu expressions can be
based on gpu values. mem expressions can refer to both cores and gpus.

env and param expressions - env expressions can be based on gpu, cores or mem. param expressions can additional
refer to evaluated env expressions.

rank functions - these can refer to all prior expressions, and are additional passed in a candidate_destinations array,
which is a list of matching TPV destinations.

Properties that do not support expressions

Some properties do not support expressions. These are primarily:

• max_accepted_cores, max_accepted_mem and max_accepted_gpus, which can only be defined on destinations.
This is because when a combined entity is matched with a destination, concrete values are required.

• tags defined on entities

Evaluation by expression type

The simple rule of thumb here is that all string expressions are evaluated as python f-strings, and all integers or boolean
expressions are evaluated as python code blocks. If evaluated as an f-string, the expressions must be a single line and
must evaluate to a string. If evaluated as a code-block, expressions may span multiple lines of arbitrary Python code,
but the last line must be an expression that evaluates to the expected return type (The return statement should not and
cannot be used)

1.3. Advanced Topics 15

TotalPerspectiveVortex Documentation, Release 2.3.3

Field Evaluated As Expected type
gpus code block float
cores code block float
mem code block float
env f-strings string
params f-strings string
min_gpus code block float
min_cores code block float
min_mem code block float
max_gpus code block float
max_cores code block float
max_mem code block float
rank code block list of destinations
context not evaluated string
scheduling tags not evaluated string
inherits not evaluated string
max_accepted_gpus not evaluated float
max_accepted_cores not evaluated float
max_accepted_mem not evaluated float
if code block bool
rules not evaluated list of rules
execute code block void
fail f-string string
resubmit f-strings string

1.3.2 Scheduling

TPV offers several mechanisms for controlling scheduling, all of which are optional. In its simplest form, no scheduling
constraints would be defined at all, in which case the entity would schedule on the first available destination. Admins
can use scheduling tags to exert additional control over which destinations jobs can schedule on. Scheduling tags
fall into one of four categories, (required, preferred, accepted, rejected), ranging from indicating a requirement for a
particular entity, to indicating complete aversion.

Tag
Type

Description

re-
quire

required tags must match up for scheduling to occur. For example, if a tool is marked as requiring the high-
mem tag, only destinations that are tagged as requiring, preferring or accepting the high-mem tag would be
considering for scheduling.

pre-
fer

prefer tags are ranked higher that accept tags when scheduling decisions are made.

ac-
cept

accept tags can be used to indicate that a entity can match up or support another entity, even if not preferen-
tially.

re-
ject

reject tags cannot be present for scheduling to occur. For example, if a tool is marked as rejecting the pulsar
tag, only destinations that do not have that tag are considered for scheduling. If two entities have the same
reject tag, they still repel each other.

16 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

Scheduling tag compatibility table

Tag Type Require Prefer Accept Reject Not Tagged
Require ✓ ✓ ✓ × ×
Prefer ✓ ✓ ✓ × ✓
Accept ✓ ✓ ✓ × ✓
Reject × × × × ✓
Not Tagged × ✓ ✓ ✓ ✓

Scheduling by tag match

Scheduling tags can be used to model anything from compatibility with a destination, to permissions to execute a tool.
(e.g. a tool can be tagged as requiring the “restricted” tag, and users can be tagged as rejecting the “restricted” tag by
default. Then, only users who are specifically marked as requiring, tolerating, or preferring the “restricted” tag can
execute that tool. Of course, the destination must also be marked as not rejecting the “restricted” tag.

Scheduling by rules

Rules can be used to conditionally modify any entity requirement. Rules can be given an ID, which can subsequently
be used by an inheriting entity to override the rule. If no ID is specified, a unique ID is generated, and the rule can no
longer be overridden. Rules are typically evaluated through an if clause, which specifies the logical condition under
which the rule matches. If the rule matches, cores, memory, scheduling tags etc. can be specified to override inherited
values. The special clause fail can be used to immediately fail the job with an error message. The execute clause can
be used to execute an arbitrary code block on rule match.

Scheduling by custom ranking functions

The default rank function sorts destinations by scoring how well the tags match the job’s requirements. As this may
often be too simplistic, the rank function can be overridden by specifying a custom rank clause. The rank clause
can contain an arbitrary code block, which can do the desired sorting, for example by determining destination load
by querying the job manager, influx statistics etc. The final statement in the rank clause must be the list of sorted
destinations.

1.4 Concepts and Organisation

1.4.1 Object types

Conceptually, TPV consists of the following types of objects.

1. Entities - An entity is anything that will be considered for scheduling by TPV. Entities include Tools, Users, Groups,
Rules and Destinations. All entities have some common properties (id, cores, mem, env, params, and scheduling tags).

2. Scheduling Tags - Entities can have scheduling tags defined on them that determine which entities match up, and
which destination they can schedule on. Tags fall into one of four categories, (required, preferred, accepted, rejected),
ranging from indicating a requirement for a particular destination, to indicating complete aversion.

3. Loader - The loader is responsible for loading entity definitions from a config file. The loader will parse and
validate entity definitions, including compiling python expressions, and processing inheritance, to produce a list of

1.4. Concepts and Organisation 17

TotalPerspectiveVortex Documentation, Release 2.3.3

entities suitable for mapping. The loader is also capable of loading config files from multiple sources, including https
urls.

4. Mapper - The mapper is responsible for routing a Galaxy job to its destination, based on the current user, tool and
job that must be scheduled. The mapper will respect the scheduling constraints expressed by the loaded entities.

1.4.2 Operations

When a mapper routes jobs to a destination, it does so by applying 5 basic operations on entities.

1. Inherit

The inherit operation enables an entity to inherit the properties of another entity of the same type, and to override any
required properties. While a Tool can inherit another tool, which can in-turn inherit yet another tool, it cannot inherit a
User, as it is a different entity type. It is also possibly to globally define a default_inherits field, which is the entity that
all entities will inherit from should they not have an inherits tag explicitly defined. Inheritance is generally processed
at load time by the Loader, so that there is no cost at runtime. However, the Mapper will process default inheritance,
should the user, role or tool that is being dispatched not have an entry in the entities list.

When inheriting scheduling tags, if the same tag is defined by both the parent and the child, only the child’s tag will
take effect. For example, if a parent defines high-mem as a required tag, but a child defines high-mem as a preferred
tag, then the tag will be treated as a preferred tag.

2. Combine

The combine operation matches up the current user, role and tool entities, and creates a combined entity that shares all
their respective preferences. If the same property is defined on both entities, the entity with the higher merge priority
will override the other. The priority order is fixed in the following way: Destination > User > Role > Tool. For example,
if a tool specifies cores, and a user also specifies cores, the user’s cores value will take precedence. Properties defined
on destinations have the highest priority of all. The combine operation follows the following additional rules:

Combining scheduling tags

When combining scheduling tags, if a role expresses a preferences for tag training for example, and a tool expresses
a requirement for tag high-mem, the combined entity would share both preferences. This can be used to route certain
roles or users to specific destinations for example.

However, if the tags are mutually exclusive, then an IncompatibleTagsException is raised. For example, if a role
expresses a preference for training, but the tool rejects tag training, then the job can no longer be scheduled. If the
tags are compatible, then the tag with the stronger claim takes effect. For example, if a tool requires high-mem and a
user prefers high-mem, then the combined entity will require high-mem. An example of using this property would be
to restrict the availability of dangerous tools only to trusted users.

18 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

Combining envs and params

In this case, these requirements are simply merged, with duplicate envs and params merged in the following order:
Destination > User > Role > Tool.

3. Evaluate

This operation evaluates any python expressions in the combined entity. At this point, rules are also evaluated. After
evaluation, expressions such as cores, mem, max_cores, min_gpus etc., will all have concrete values. During evaluation,
the cores, mem and gpu values are clamped between min_cores, min_mem, min_gpus and max_cores, max_mem,
max_gpus. Afterwards, these values can be compared with a destination’s values, as described in the match step next.

4. Match

The match operation is used to find matching destinations for the combined, evaluated entity. This step ensures that
the destination has sufficient gpus, cores and mem to satisfy the entity’s request. The maximum size of a job that
a destination can accept can be defined using the max_accepted_cores, max_accepted_mem and max_accepted_gpus
fields. If these are not defined, a match is assumed. In addition, all destinations that do not have scheduling tags
required by the entity are rejected, and all destinations that have scheduling tags rejected by the entity are also rejected.
Preference and acceptance is not considered at this stage, simply compatibility with available destination based on the
tag compatibility table documented later.

5. Rank

After the matching destinations are short listed, they are ranked using a pluggable rank function. The default rank
function simply sorts the destinations by tags that have the most number of preferred tags, with a penalty if preferred
tags are absent. However, this default rank function can be overridden per entity, allowing a custom rank function to
be defined in python code, with arbitrary logic for picking the best match from the available candidate destinations.

1.4.3 Job Dispatch Process

When a typical job is dispatched, TPV follows the process below.

1. lookup - Looks up Tool, User and Role entity definitions that match the job.

2. combine() - Combines entity requirements to create a merged entity.

3. evaluate() - Evaluates expressions in combined entity.

4. match() - Matches the combined entity requirements with a suitable destination.

5. rank() - Rank the matching destinations using a pluggable rank function.

6. choose - The entity is combined with the best matching destination and any expressions on the destination are
evaluated, with the first non-failing match chosen (no rule failures).

1.4. Concepts and Organisation 19

TotalPerspectiveVortex Documentation, Release 2.3.3

1.5 Inner workings

1.5.1 Types of objects

Conceptually, TPV consists of the following types of objects.

1. Entities - An entity is anything that will be considered for scheduling by TPV. Entities include Tools, Users, Roles,
Rules and Destinations. All entities have some common properties (id, cores, mem, env, params, and scheduling tags).

2. Scheduling Tags - Entities can have scheduling tags defined on them that determine which entities match up, and
which destination they can schedule on. Tags fall into one of four categories, (require, prefer, accept, reject), ranging
from indicating a requirement for a particular destination, to indicating complete aversion.

3. Loader - The loader is responsible for loading entity definitions from a config file. The loader will parse and
validate entity definitions, including compiling python expressions, and processing inheritance, to produce a list of
entities suitable for mapping. The loader is also capable of loading config files from multiple sources, including https
urls.

4. Mapper - The mapper is responsible for routing a Galaxy job to its destination, based on the current user, tool and
job that must be scheduled. The mapper will respect the scheduling constraints expressed by the loaded entities.

1.5.2 Operations

When a mapper routes jobs to a destination, it does so by applying 5 basic operations on entities.

1. Inherit

The inherit operation enables an entity to inherit the properties of another entity of the same type, and to override any
required properties. While a Tool can inherit another tool, which can in-turn inherit yet another tool, it cannot inherit a
User, as it is a different entity type. It is also possibly to globally define a default_inherits field, which is the entity that
all entities will inherit from should they not have an inherits tag explicitly defined. Inheritance is generally processed
at load time by the Loader, so that there is no cost at runtime. However, the Mapper will process default inheritance,
should the user, role or tool that is being dispatched not have an entry in the entities list.

When inheriting scheduling tags, if the same tag is defined by both the parent and the child, only the child’s tag will
take effect. For example, if a parent defines high-mem as a required tag, but a child defines high-mem as a preferred
tag, then the tag will be treated as a preferred tag.

2. Combine

The combine operation matches up the current user, role and tool entities, and creates a combined entity that shares all
their respective preferences. If the same property is defined on both entities, the entity with the higher merge priority
will override the other. The priority order is fixed in the following way: Destination > User > Role > Tool. For example,
if a tool specifies cores, and a user also specifies cores, the user’s cores value will take precedence. Properties defined
on destinations have the highest priority of all. The combine operation follows the following additional rules:

20 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

Combining scheduling tags

When combining scheduling tags, if a role expresses a preferences for tag training for example, and a tool expresses
a requirement for tag high-mem, the combined entity would share both preferences. This can be used to route certain
roles or users to specific destinations for example.

However, if the tags are mutually exclusive, then an IncompatibleTagsException is raised. For example, if a role
expresses a preference for training, but the tool rejects tag training, then the job can no longer be scheduled. If the
tags are compatible, then the tag with the stronger claim takes effect. For example, if a tool requires high-mem and a
user prefers high-mem, then the combined entity will require high-mem. An example of using this property would be
to restrict the availability of dangerous tools only to trusted users.

Combining envs and params

In this case, these requirements are simply merged, with duplicate envs and params merged in the following order:
Destination > User > Role > Tool.

3. Evaluate

This operation evaluates any python expressions in the combined entity. At this point, rules are also evaluated. After
evaluation, expressions such as cores, mem, max_cores, min_gpus etc., will all have concrete values. During evaluation,
the cores, mem and gpu values are clamped between min_cores, min_mem, min_gpus and max_cores, max_mem,
max_gpus. Afterwards, these values can be compared with a destination’s values, as described in the match step next.

4. Match

The match operation is used to find matching destinations for the combined, evaluated entity. This step ensures that
the destination has sufficient gpus, cores and mem to satisfy the entity’s request. The maximum size of a job that
a destination can accept can be defined using the max_accepted_cores, max_accepted_mem and max_accepted_gpus
fields. If these are not defined, a match is assumed. In addition, all destinations that do not have scheduling tags
required by the entity are rejected, and all destinations that have scheduling tags rejected by the entity are also rejected.
Preference and acceptance is not considered at this stage, simply compatibility with available destination based on the
tag compatibility table documented later.

5. Rank

After the matching destinations are short listed, they are ranked using a pluggable rank function. The default rank
function simply sorts the destinations by tags that have the most number of preferred tags, with a penalty if preferred
tags are absent. However, this default rank function can be overridden per entity, allowing a custom rank function to
be defined in python code, with arbitrary logic for picking the best match from the available candidate destinations.

1.5. Inner workings 21

TotalPerspectiveVortex Documentation, Release 2.3.3

1.5.3 Job Dispatch Process

When a typical job is dispatched, TPV follows the process below.

1. lookup - Looks up Tool, User and Role entity definitions that match the job.

2. combine() - Combines entity requirements to create a merged entity.

3. evaluate() - Evaluates expressions in combined entity.

4. match() - Matches the combined entity requirements with a suitable destination.

5. rank() - Rank the matching destinations using a pluggable rank function.

6. choose - The entity is combined with the best matching destination and any expressions on the destination are
evaluated, with the first non-failing match chosen (no rule failures).

1.6 Shell Commands

1.6.1 lint

TPV config files can be checked for linting errors using the tpv lint command.

tpv lint <url_or_path_to_config_file>

If linting is successful, a lint successful message will be displayed with an exit code of zero. If the linting fails, a lint
failed message with the relevant error will be displayed with an exit code of 1. For example:

$ cat >good.yml <<EOF
tools:
default:
cores: 1
mem: cores * 3.9
context:
partition: normal

params:
native_specification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{round(mem*1024)} --partition={partition}"
scheduling:
reject:
- offline

rules: []
EOF
$ tpv lint good.yml
INFO : tpv.commands.shell: lint successful.
$ echo $?
0

cat >bad.yml <<EOF
tools:
- default:

cores: 1
EOF
$ tpv lint bad.yml

(continues on next page)

22 Chapter 1. Shared database

TotalPerspectiveVortex Documentation, Release 2.3.3

(continued from previous page)

INFO : tpv.commands.shell: lint failed.
$ echo $?
1

To display the reasons for the failure, use the -v option to increase verbosity, with␣
→˓each additional v increasing log level.

1.6.2 dry-run

You can test that your TPV configuration returns the expected destination for a given tool and/or user using the tpv
dry-run command.

tpv dry-run --job-conf <path_to_galaxy_job_conf_file> [--tool <tool_id>] \
[--user <user_name_or_email>] [--input-size <size_in_gb>] \
[tpv_config_file ...]

If no TPV config files are specified on the command line, they will be read from the tpv_dispatcher execution
environment (destination) definition in the specified Galaxy job configuration file.

For example:

$ tpv dry-run --job-conf /srv/galaxy/config/job_conf.yml
!!python/object:galaxy.jobs.JobDestination
converted: false
env:
- {name: LC_ALL, value: C}
id: slurm
legacy: false
params: {native_specification: --nodes=1 --ntasks=1 --ntasks-per-node=1 --mem=3994

--partition=normal, outputs_to_working_directory: true, tmp_dir: true}
resubmit: []
runner: slurm
shell: null
tags: null
url: null

$ tpv dry-run --job-conf /srv/galaxy/config/job_conf.yml --tool trinity --input-size 40␣
→˓*.yml
!!python/object:galaxy.jobs.JobDestination
converted: false
env:
- {name: LC_ALL, value: C}
- {name: TERM, value: vt100}
- {execute: ulimit -c 0}
- {execute: ulimit -u 16384}
id: pulsar
legacy: false
params:
default_file_action: remote_transfer
dependency_resolution: remote
jobs_directory: /scratch/pulsar/staging

(continues on next page)

1.6. Shell Commands 23

TotalPerspectiveVortex Documentation, Release 2.3.3

(continued from previous page)

outputs_to_working_directory: false
remote_metadata: false
rewrite_parameters: true
submit_native_specification: --nodes=1 --ntasks=20 --ntasks-per-node=20 --

→˓partition=xlarge
transport: curl

resubmit: []
runner: pulsar
shell: null
tags: null
url: null

1.7 Migration Guide

1.7.1 Migrating from v1.x to v2.x

TPV v2.0.0 introduces a number of changes to improve simplicity by disambiguating overloaded terms and reducing
code complexity. (xref: https://github.com/galaxyproject/total-perspective-vortex/pull/58). This has resulted in the
following breaking changes.

1. cores, mem and gpus on destinations have been renamed to max_accepted_cores, max_accepted_mem and
max_accepted_gpus. While cores, mem and gpus can still be defined on a destination, the result will be that
all tools at that destination would be forcibly changed to use those core, mem and gpu values, which is probably
not what is desired. Instead, define max_accepted_{cores|mem|gpus} to preserve previous behaviour.

2. In TPV 1.x, cores, mem and gpus defined on Users or Roles were used as the max_cores to allocate to a user or
role. For example, if a tool defines cores as 4, but a user defines cores as 2, the lower of the two values would
be used. This overloaded terminology has been disambiguated in TPV 2.x, by introducing several additional
properties. All entities can now define: min_cores, min_mem and min_gpus as well as max_cores, max_mem
and max_gpus. No matter how many cores a tool requests, they will be clamped between these specified min
and max values. Therefore, in TPV 2.x, cores defined on users or roles will need to be renamed to max_cores to
preserve earlier semantics.

3. The runner parameter is now required on destinations. TPV no longer reads destinations defined in job_conf.yml,
and instead, only uses destinations defined in its own configuration files. The linter has been updated to warn
you if the runner parameter is not defined.

4. The destination_name_override property is no longer an extra param on the destination. It is instead, a top-level
property of a destination. The destination_name_override can be used to dynamically generate a custom name
for the destination.

5. Any custom Python code that refers to scheduling tags through entity.tags should now use entity.tpv_tags on
Tool, User, and Role entities. Destination entities now have the property entity.tpv_dest_tags.

24 Chapter 1. Shared database

https://github.com/galaxyproject/total-perspective-vortex/pull/58

TotalPerspectiveVortex Documentation, Release 2.3.3

1.8 FAQ

1. How can I perform some debug logging within a code block?

You can simply import the logging module within a code block. For example:

linenos

tools:
default: cores: 2 mem: cores * 3 rules:

• if: True execute: |

import logging log = logging.getLogger(__name__) log.debug(f”Here’s what the entity
looks like: {entity}”)

2. How can I import custom libraries or code?

As long as the code is available within Galaxy’s virtualenv or the python path, it can be imported like any other
package. For example:

linenos

tools:
default: cores: 2 mem: cores * 3 rules:

• if: True execute: |

import my_custom_module my_custom_module.my_func()

1.9 Indices and tables

• genindex

• modindex

• search

1.8. FAQ 25

	Shared database
	Installation
	Basic steps
	Configuring Galaxy

	Combining multiple remote and local configs
	Standalone Installation

	TPV by example
	Simple configuration
	Default inheritance
	Explicit inheritance
	Scheduling tags
	Rules
	User and Role Handling
	Metascheduling
	Custom contexts
	Multiple matches
	Job Environment
	Job Resubmission
	Using the shared database
	Clamping resources
	Giving a parameterized, custom name to a destination

	Advanced Topics
	Expressions
	Default evaluation context
	Custom evaluation contexts
	Special evaluation contexts
	Properties that do not support expressions
	Evaluation by expression type

	Scheduling
	Scheduling tag compatibility table
	Scheduling by tag match
	Scheduling by rules
	Scheduling by custom ranking functions

	Concepts and Organisation
	Object types
	Operations
	1. Inherit
	2. Combine
	Combining scheduling tags
	Combining envs and params

	3. Evaluate
	4. Match
	5. Rank

	Job Dispatch Process

	Inner workings
	Types of objects
	Operations
	1. Inherit
	2. Combine
	Combining scheduling tags
	Combining envs and params

	3. Evaluate
	4. Match
	5. Rank

	Job Dispatch Process

	Shell Commands
	lint
	dry-run

	Migration Guide
	Migrating from v1.x to v2.x

	FAQ
	Indices and tables

