
TotalPerspectiveVortex Documentation
Release 1.2.0

Galaxy and GVL projects

Jun 15, 2022

CONTENTS:

1 Getting Started 3
1.1 TPV by example . 3
1.2 Concepts and Organisation . 11
1.3 Configuring Galaxy . 15
1.4 Shell Commands . 16
1.5 Indices and tables . 16

i

ii

TotalPerspectiveVortex Documentation, Release 1.2.0

TotalPerspectiveVortex (TPV) provides an installable set of dynamic rules for the Galaxy application that can route
entities (Tools, Users, Roles) to appropriate destinations based on a configurable yaml file. The aim of TPV is to build
on and unify previous efforts, such as Dynamic Tool Destinations, the Job Router and Sorting Hat, into a configurable
set of rules that that can be extended arbitrarily with custom Python logic.

TPV provides a dynamic rule that can be plugged into Galaxy via job_conf.xml. The dynamic rule will also have
an associated configuration file, that maps entities (tools, users, roles) to specific destination through a flexible tagging
system. Destinations can have arbitrary tags defined, and each entity can express a preference or aversion to specific
tags. Based on this tagging, jobs are routed to the most appropriate destination. In addition, admins can also plugin
arbitrary python based rules for making more complex decisions, as well as custom ranking functions for choosing
between matching destinations. For example, a ranking function could query influx metrics to determine the least
loaded destination, and route jobs there, providing a basic form of “metascheduling” functionality.

CONTENTS: 1

https://galaxyproject.org/
https://training.galaxyproject.org/training-material/topics/admin/tutorials/job-destinations/tutorial.html
https://github.com/galaxyproject/usegalaxy-playbook/blob/c674b4795d63485392acd55bf6b4c7fb31754f5d/env/common/files/galaxy/dynamic_rules/job_router.py
https://github.com/usegalaxy-eu/sorting-hat

TotalPerspectiveVortex Documentation, Release 1.2.0

2 CONTENTS:

CHAPTER

ONE

GETTING STARTED

1. pip install total-perspective-vortex into Galaxy’s python virtual environment

2. Configure Galaxy to use TPV’s dynamic destination rule

3. Create the TPV job mapping yaml file, indicating job routing preferences

4. Submit jobs as usual

1.1 TPV by example

1.1.1 Simple configuration

The simplest possible example of a useful TPV config might look like the following:

1 tools:
2 https://toolshed.g2.bx.psu.edu/repos/iuc/hisat2/.*:
3 cores: 12
4 mem: cores * 4
5 gpus: 1
6

7 destinations:
8 slurm:
9 cores: 16

10 mem: 64
11 gpus: 2
12 general_pulsar_1:
13 cores: 8
14 mem: 32
15 gpus: 1

Here, we define one tool and its resource requirements, the destinations available, and the total resources available at
each destination (optional). The tools are matched by tool id, and can be a regular expression. Note how resource
requirements can also be computed as python expressions. If resource requirements are defined at the destination, TPV
will check whether the job will fit. For example, hisat2 will not schedule on general_pulsar_1 as it has insufficient
cores. If resource requirements are omitted in the tool or destination, it is considered a match.

3

TotalPerspectiveVortex Documentation, Release 1.2.0

1.1.2 Default inheritance

Inheritance provides a mechanism for an entity to inherit properties from another entity, reducing repetition.

1 global:
2 default_inherits: default
3

4 tools:
5 default:
6 cores: 2
7 mem: 4
8 params:
9 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024}"
10 https://toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.1.0+galaxy7:
11 cores: 12
12 mem: cores * 4
13 gpus: 1

The global section is used to define global TPV properties. The default_inherits property defines a “base class” for all
tools to inherit from.

In this example, if the bwa tool is executed, it will match the default tool, as there are no other matches, thus inheriting
its resource requirements. The hisat2 tool will also inherit these defaults, but is explicitly overriding cores, mem and
gpus. It will inherit the nativeSpecification param.

1.1.3 Explicit inheritance

Explicit inheritance provides a mechanism for exerting greater control over the inheritance chain.

1 global:
2 default_inherits: default
3

4 tools:
5 default:
6 cores: 2
7 mem: 4
8 params:
9 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024}"
10 https://toolshed.g2.bx.psu.edu/repos/iuc/hisat2/.*:
11 cores: 12
12 mem: cores * 4
13 gpus: 1
14 .*minimap2.*:
15 inherits: https://toolshed.g2.bx.psu.edu/repos/iuc/hisat2/.*:
16 cores: 8
17 gpus: 0

In this example, the minimap2 tool explicitly inherits requirements from the hisat2 tool, which in turn inherits the
default tool. There is no limit to how deep the inheritance hierarchy can be.

4 Chapter 1. Getting Started

TotalPerspectiveVortex Documentation, Release 1.2.0

1.1.4 Scheduling tags

Scheduling tags provide a means by which to control how entities match up, and can be used to route jobs to preferred
destinations, or to explicitly control which users can execute which tools, and where.

1 tools:
2 default:
3 cores: 2
4 mem: 4
5 params:
6 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024}"
7 scheduling:
8 reject:
9 - offline

10 https://toolshed.g2.bx.psu.edu/repos/iuc/hisat2/.*:
11 cores: 4
12 mem: cores * 4
13 gpus: 1
14 scheduling:
15 require:
16 prefer:
17 - highmem
18 accept:
19 reject:
20 https://toolshed.g2.bx.psu.edu/repos/iuc/minimap2/.*:
21 cores: 4
22 mem: cores * 4
23 gpus: 1
24 scheduling:
25 require:
26 - highmem
27

28 destinations:
29 slurm:
30 cores: 16
31 mem: 64
32 gpus: 2
33 scheduling:
34 prefer:
35 - general
36

37 general_pulsar_1:
38 cores: 8
39 mem: 32
40 gpus: 1
41 scheduling:
42 prefer:
43 - highmem
44 reject:
45 - offline

In this example, all tools reject destinations marked as offline. The hisat2 tool expresses a preference for highmem, and
inherits the rejection of offline tags. Inheritance can be used to override scheduling tags. For example, the minimap2

1.1. TPV by example 5

TotalPerspectiveVortex Documentation, Release 1.2.0

tool inherits hisat2, but now requires a highmem tag, instead of merely preferring it.

The destinations themselves can be tagged in similar ways. In this case, the general_pulsar_1 destination also prefers
the highmem tag, and thus, the hisat2 tool would schedule there. However, general_pulsar_1 also rejects the offline tag,
and therefore, the hisat2 tool cannot schedule there. Therefore, it schedules on the only available destination, which is
slurm.

The minimap2 tool meanwhile requires highmem, but rejects offline tags, which leaves it nowhere to schedule. This
results in a JobMappingException being thrown.

A full table of how scheduling tags match up can be found in the Scheduling section.

1.1.5 Rules

Rules provide a means by which to conditionally change entity requirements.

1 tools:
2 default:
3 cores: 2
4 mem: cores * 3
5 rules:
6 - id: my_overridable_rule
7 if: input_size < 5
8 fail: We don't run piddling datasets of {input_size}GB
9 bwa:

10 scheduling:
11 require:
12 - pulsar
13 rules:
14 - id: my_overridable_rule
15 if: input_size < 1
16 fail: We don't run piddling datasets
17 - if: input_size <= 10
18 cores: 4
19 mem: cores * 4
20 execute: |
21 from galaxy.jobs.mapper import JobNotReadyException
22 raise JobNotReadyException()
23 - if: input_size > 10 and input_size < 20
24 scheduling:
25 require:
26 - highmem
27 - if: input_size >= 20
28 fail: Input size: {input_size} is too large shouldn't run

The if clause can contain arbitrary python code, including multi-line python code. The only requirement is that the last
statement in the code block must evaluate to a boolean value. In this example, the input_size variable is an automatically
available contextual variable which is computed by totalling the sizes of all inputs to the job. Additional available
variables include app, job, tool, and user.

If the rule matches, the properties of the rule override the properties of the tool. For example, if the input_size is 15,
the bwa tool will require both pulsar and highmem tags.

Rules can be overridden by giving them an id. For example, the default for all tools is to reject input sizes < 5 by using
the my_overridable_rule rule. We override that for the bwa tool by specifically referring to the inherited rule by id. If
no id is specified, an id is auto-generated and no longer overridable.

6 Chapter 1. Getting Started

TotalPerspectiveVortex Documentation, Release 1.2.0

Note the use of the {input_size} variable in the fail message. The general rule is that all non-string expressions are
evaluated as python code blocks, while string variables are evaluated as python f-strings.

The execute block can be used to create arbitrary side-effects if a rule matches. The return value of an execute block is
ignored.

1.1.6 User and Role Handling

Scheduling rules can also be expressed for users and roles.

1 tools:
2 default:
3 scheduling:
4 require: []
5 prefer:
6 - general
7 accept:
8 reject:
9 - pulsar

10 rules: []
11 dangerous_interactive_tool:
12 cores: 8
13 mem: 8
14 scheduling:
15 require:
16 - authorize_dangerous_tool
17 users:
18 default:
19 scheduling:
20 reject:
21 - authorize_dangerous_tool
22 fairycake@vortex.org:
23 cores: 4
24 mem: 16
25 scheduling:
26 accept:
27 - authorize_dangerous_tool
28 prefer:
29 - highmem
30

31 roles:
32 training.*:
33 cores: 5
34 mem: 7
35 scheduling:
36 reject:
37 - pulsar

In this example, if user fairycake@vortex.org attempts to dispatch a dangerous_interactive_tool job, the requirements
for both entities would be combined. Most requirements would simply be merged, such as env vars and job params.
However, when combining gpus, cores and mem, the lower of the two values are used. In this case, the combined entity
would have a core value of 4 and a mem value of 8. This allows training users for example, to be forced to use a lower
number of cores than usual.

1.1. TPV by example 7

TotalPerspectiveVortex Documentation, Release 1.2.0

In addition, for these entities to be combined, the scheduling tags must also be compatible. In this instance the
dangerous_interactive_tool requires the authorize_dangerous_tool tag, which all users by default reject. Therefore,
most users cannot run this tool by default. However, fairycake@vortex.org overrides that and accepts the autho-
rize_dangerous_tool allowing only that user to run the dangerous tool.

Roles can be matched in this exact way. Rules can also be defined at the user and role level.

1.1.7 Metascheduling

Custom rank functions can be used to implement metascheduling capabilities. A rank function is used to select the
best matching destination from a list of matching destination. If no rank function is provided, the default rank function
simply chooses the most preferred destination out of the available destinations.

When more sophisticated control over scheduling is required, a rank function can be implemented through custom
python code.

1 tools:
2 default:
3 cores: 2
4 mem: 8
5 rank: |
6 import requests
7

8 params = {
9 'pretty': 'true',

10 'db': 'pulsar-test',
11 'q': 'SELECT last("percent_allocated") from "sinfo" group by "host"'
12 }
13

14 try:
15 response = requests.get('http://stats.genome.edu.au:8086/query', params=params)
16 data = response.json()
17 cpu_by_destination = {s['tags']['host']:s['values'][0][1] for s in data.get(

→˓'results')[0].get('series', [])}
18 # sort by destination preference, and then by cpu usage
19 candidate_destinations.sort(key=lambda d: (-1 * d.score(entity), cpu_by_

→˓destination.get(d.id)))
20 final_destinations = candidate_destinations
21 except Exception:
22 log.exception("An error occurred while querying influxdb. Using a weighted␣

→˓random candidate destination")
23 final_destinations = helpers.weighted_random_sampling(candidate_destinations)
24 final_destinations

In this example, the rank function queries a remote influx database to find the least loaded destination, The matching
destinations are available to the rank function through the candidate_destinations contextual variable. Therefore, in
this example, the candidate destinations are first sorted by the best matching destination (score is the default ranking
function), and then sorted by CPU usage per destination, obtained from the influxdb query.

Note that the final statement in the rank function must be the list of sorted destinations.

8 Chapter 1. Getting Started

TotalPerspectiveVortex Documentation, Release 1.2.0

1.1.8 Custom contexts

In addition to the automatically provided context variables (see Concepts and Organisation), TPV allows you to define
arbitrary custom variables, which are then available whenever an expression is evaluated. Contexts can be defined both
globally or at the level of each entity, with entity level context variables overriding global ones.

1 global:
2 default_inherits: default
3 context:
4 ABSOLUTE_FILE_SIZE_LIMIT: 100
5 large_file_size: 10
6 _a_protected_var: "some value"
7

8 tools:
9 default:

10 context:
11 additional_spec: --my-custom-param
12 cores: 2
13 mem: 4
14 params:
15 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024} {additional_spec}"
16 rules:
17 - if: input_size >= ABSOLUTE_FILE_SIZE_LIMIT
18 fail: Job input: {input_size} exceeds absolute limit of: {ABSOLUTE_FILE_SIZE_

→˓LIMIT}
19 - if: input_size > large_file_size
20 cores: 10
21

22 https://toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.1.0+galaxy7:
23 context:
24 large_file_size: 20
25 additional_spec: --overridden-param
26 mem: cores * 4
27 gpus: 1

In this example, three global context variables are defined, which are made available to all entities. Variable names
follow Python conventions, where all uppercase variables indicate constants that cannot be overridden. Lower case
indicates a public variable that can be overridden and changed, even across multiple TPV config files. An underscore
indicates a protected variable that can be overridden within the same file, but not across files.

Additional, the tool defaults section defines an additional context variable named ‘additional_spec`, which is only
available to inheriting tools.

If we were to dispatch a job, say bwa, with an input_size of 15, the large file rule in the defaults section would kick
in, and the number of cores would be set to 10. If we were to dispatch a hisat2 job with the same input size however,
the large_file_size rule would not kick in, as it has been overridden to 20. The main takeaway from this example is
that variables are bound late, and therefore, rules and params can be crafted to allow inheriting tools to conveniently
override values, even across files. While this capability can be powerful, it needs to be treated with the same care as
any global variable in a programming language.

1.1. TPV by example 9

TotalPerspectiveVortex Documentation, Release 1.2.0

1.1.9 Multiple matches

If multiple regular expressions match, the matches are applied in order of appearance. Therefore, the convention is to
specify more general rule matches first, and more specific matches later. This matching also applies across multiple
TPV config files, again based on order of appearance.

1 tools:
2 default:
3 cores: 2
4 mem: 4
5 params:
6 nativeSpecification: "--nodes=1 --ntasks={cores} --ntasks-per-node={cores} --mem=

→˓{mem*1024}"
7

8 https://toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/*:
9 mem: cores * 4

10 gpus: 1
11

12 https://toolshed.g2.bx.psu.edu/repos/iuc/hisat2/hisat2/2.1.0+galaxy7:
13 env:
14 MY_ADDITIONAL_FLAG: "test"

In this example, dispatching a hisat2 job would result in a mem value of 8, with 1 gpu. However, dispatching the
specific version of 2.1.0+galaxy7 would result in the additional env variable, with mem remaining at 8.

1.1.10 Job Resubmission

TPV has explict support for job resubmissions, so that advanced control over job resubmission is possible.

1 tools:
2 default:
3 cores: 2
4 mem: 4 * int(job.destination_params.get('SCALING_FACTOR', 1)) if job.destination_

→˓params else 1
5 params:
6 SCALING_FACTOR: "{2 * int(job.destination_params.get('SCALING_FACTOR', 2)) if job.

→˓destination_params else 2}"
7 resubmit:
8 with_more_mem_on_failure:
9 condition: memory_limit_reached and attempt <= 3

10 destination: tpv_dispatcher

In this example, we have defined a resubmission handler that resubmits the job if the memory limited is reached. Note
that the resubmit section looks exactly the same as Galaxy’s, except that it follows a dictionary structure instead of
being a list. Refer to the Galaxy job configuration docs for more information on resubmit handlers. One twist in this
example is that we automatically increase the amount of memory provided to the job on each resubmission. This is
done by setting the SCALING_FACTOR param, which is a custom parameter which we have chosen for this example,
that we increase on each resubmission. Since each resubmission’s destination is TPV, the param is re-evaluated on
each resubmission, and scaled accordingly. The memory is allocated based on the scaling factor, which therefore, also
scales accordingly.

10 Chapter 1. Getting Started

TotalPerspectiveVortex Documentation, Release 1.2.0

1.2 Concepts and Organisation

1.2.1 Object types

Conceptually, TPV consists of the following types of objects.

1. Entities - An entity is anything that will be considered for scheduling by TPV. Entities include Tools, Users, Groups,
Rules and Destinations. All entities have some common properties (id, cores, mem, env, params, scheduling tags).

2. Scheduling Tags - Entities can have scheduling tags defined on them that determine which entities match up, and
which destination they can schedule on. Tags fall into one of four categories, (required, preferred, accepted, rejected),
ranging from indicating a requirement for a particular entity, to indicating complete aversion.

3. Loader - The loader is responsible for loading entity definitions from a config file. The loader will parse and validate
entity definitions, including compiling python expressions, and processing inheritance, to produce a list of entities
suitable for mapping. The loader is also capable of loading config files from multiple sources, including https urls.

4. Mapper - The mapper is responsible for routing a Galaxy job to its destination, based on the current user, tool and
job that must be scheduled. The mapper will respect the scheduling constraints expressed by the loaded entities.

1.2.2 Operations

When a mapper routes jobs to a destination, it does so by applying 5 basic operations on entities.

1. Inherit

The inherit operation enables an entity to inherit the properties of another entity of the same type, and to override any
required properties. While a Tool can inherit another tool, which can in-turn inherit yet another tool, it cannot inherit a
User, as it’s a different entity type. It is also possibly to globally define a default_inherits field, which is the entity that
all entity name that all entities will inherit from should they not have an inherits tag explicitly defined. Inheritance is
generally processed at load time by the Loader, so that there’s no cost at runtime. However, the Mapper will process
default inheritance, should the user, role or tool that is being dispatched does not have an entry in the entities list.

When inheriting scheduling tags, if the same tag is defined by both the parent and the child, only the child’s tag will
take effect. For example, if a parent defines high-mem as a required tag, but a child defines high-mem as a preferred
tag, then the tag will be treated as a preferred tag.

2. Combine

The combine operation matches up the current user, role and tool entities, and creates a combined entity that shares all
their respective preferences. The combine operation follows specific rules:

Combining gpus, cores and mem In this case, the lower of the two values are used. For example, if a user entity specific
8 cores, and a tool requires 2 cores, then the lower value of 2 is used. An example of how this property can be used is
to restrict training users from running jobs with lower memory than the defaults when running assembly jobs.

1.2. Concepts and Organisation 11

TotalPerspectiveVortex Documentation, Release 1.2.0

Combining tags

When combining tags, if a role expresses a preferences for tag training for example, and a tool expresses a requirement
for tag high-mem, the combined entity would share both preferences. This can be used to route certain roles or users
to specific destinations for example.

However, if the tags are mutually exclusive, then an IncompatibleTagsException is raised. For example, if a role
expressed a preference for training, but the tool rejected tag training, then the job can no longer be scheduled. If the
tags are compatible, then the tag with the stronger claim takes effect. For example, if a tool requires ‘high-mem` and a
user prefers high-mem, then the combined entity will require high-mem. An example of using this property would be
to restrict the availability of dangerous tools only to trusted users.

Combining envs and params

In this case, these requirements are simply merged, with duplicate envs and params merged in the following order: User
> Role > Tool.

3. Evaluate

This operation evaluates any python expressions in the TPV config. It is divided into two steps, evaluate_early() and
evaluate_late(). The former runs before the combine step and evaluates expressions for cores, mem and gpus. This
ensures that at the time of combining entities, these values are concrete and can be compared. After the combine()
step, the evaluate_late() function evaluates all remaining variables, ensuring that they have the latest possible values
after combining requirements.

4. Match

The match operation is used to find matching destinations for the combined, evaluated entity. This step ensures that the
destination has sufficient gpus, cores and mem to satisfy the entity’s request, assuming these are defined. If these are
not defined, a match is assumed. In addition, all destinations that do not have tags required by the entity are rejected,
and all destinations that have tags rejected by the entity are also rejected. Preference and acceptance is not considered
at this stage, simply compatibility with available destinations based on the tag compatibility table documented later.

5. Rank

After the matching destinations are short listed, they are ranked using a pluggable rank function. The default rank
function simply sorts the destinations by tags that have the most number of preferred tags, with a penalty if preferred
tags are absent. However, this default rank function can be overridden per entity, allowing a custom rank function to
be defined in python code, with arbitrary logic for picking the best match from the available candidate destinations.

1.2.3 Job Dispatch Process

When a typical job is dispatched, TPV follows the process below.

1. lookup - Looks up Tool, User and Role entity definitions that match the job

2. evaluate_early() - Evaluates gpu, cores, and mem expressions

3. combine() - Combines entity requirements to create a merged entity. Uses lower of gpu, cores and mem require-
ments

4. evaluate_late() - Evaluates remaining expressions as late as possible

12 Chapter 1. Getting Started

TotalPerspectiveVortex Documentation, Release 1.2.0

5. match() - Matches the combined entity requirements with a suitable destination

6. rank() - The matching destinations are ranked

7. choose - The ranked destinations are evaluated, with the first non-failing match chosen (no rule failures)

1.2.4 Expressions

Most TPV properties can be expressed as python expressions. The rule of thumb is that all string expressions are
evaluated as python f-strings, and all integers or boolean expressions are evaluated as python code blocks. For example,
cpu, cores and mem are evaluated as python code blocks, as they evaluate to integer/float values. However, env and
params are evaluated as f-strings, as they result in string values. This is to improve the readability and syntactic
simplicity of TPV config files.

At the point of evaluating these functions, there is an evaluation context, which is a default set of variables that are
available to that expression. The following default variables are available to all expressions:

Default evaluation context

Custom evaluation contexts

These are user defined context values that can be defined globally, or locally at the level of each entity. Any defined
context value is available as a regular variable at the time the entity is evaluated.

Special evaluation contexts

In addition to the defaults above, additional context variables are available at different steps.

gpu, core and mem expressions - these are evaluated in order, and thus can be referred to in that same order. For
example, gpu expressions cannot refer to core and mem, as they have not been evaluated yet. cpu expressions can be
based on gpu values. mem expressions can refer to both cores and gpus.

env and param expressions - env expressions can be based on gpu, cores or mem. param expressions can additional
refer to evaluated env expressions.

rank functions - these can refer to all prior expressions, and are additional passed in a candidate_destinations array,
which is a list of matching TPV destinations.

1.2.5 Scheduling

TPV offers several mechanisms for controlling scheduling, all of which are optional. In its simplest form, no scheduling
constraints would be defined at all, in which case the entity would schedule on the first available entity. Admins can
use additional

1.2. Concepts and Organisation 13

TotalPerspectiveVortex Documentation, Release 1.2.0

Tag
Type

Description

re-
quire

required tags must match up for scheduling to occur. For example, if a tool is marked as requiring the high-
mem tag, only destinations that are tagged as requiring, preferring or accepting the high-mem tag would be
considering for scheduling.

pre-
fer

prefer tags are ranked higher that accept tags when scheduling decisions are made.

ac-
cept

accept tags can be used to indicate that a entity can match up or support another entity, even if not preferen-
tially.

re-
ject

reject tags cannot be present for scheduling to occur. For example, if a tool is marked as rejecting the pulsar
tag, only destinations that do not have that tag are considered for scheduling. If two entities have the same
reject tag, they still repel each other.

Tag compatibility table

Tag Type Require Prefer Accept Reject Not Tagged
Require X X X × ×
Prefer X X X × X
Accept X X X × X
Reject × × × × X
Not Tagged × X X X X

Scheduling by tag match

Tags can be used to model anything from compatibility with a destination, to permissions to execute a tool. (e.g. a
tool can be tagged as requiring the “restricted” tag, and users can be tagged as rejecting the “restricted” tag by default.
Then, only users who are specifically marked as requiring, tolerating, or preferring the “restricted” tag can execute that
tool. Of course, the destination must also be marked as not rejecting the “restricted” tag.

Scheduling by rules

Rules can be used to conditionally modify any entity requirement. Rules can be given an ID, which can subsequently
be used by an inheriting entity to override the rule. If no ID is specified, a unique ID is generated, and the rule can no
longer be overridden. Rules are typically evaluated through an if clause, which specifies the logical condition under
which the rule matches. If the rule matches, cores, memory, scheduling tags etc. can be specified to override inherited
values. The special clause fail can be used to immediately fail the job with an error message. The execute clause can
be used to execute an arbitrary code block on rule match.

Scheduling by custom ranking functions

The default rank function sorts destinations by scoring how well the tags match the job’s requirements. As this may
often be too simplistic, the rank function can be overridden by specifying a custom rank clause. The rank clause
can contain an arbitrary code block, which can do the desired sorting, for example by determining destination load
by querying the job manager, influx statistics etc. The final statement in the rank clause must be the list of sorted
destinations.

14 Chapter 1. Getting Started

TotalPerspectiveVortex Documentation, Release 1.2.0

1.3 Configuring Galaxy

1.3.1 Simple configuration

1. First install the TotalPerspectiveVortex into your Galaxy virtual environment.

cd <galaxy_home>
source .venv/bin/activate
pip install --upgrade total-perspective-vortex

2. Edit your job_conf.yml in the <galaxy_home>/config folder and add the highlighted sections to it.

You can refer to a local file for the tpv_config_files setting, or alternatively, provider a link to a remote url.

1 runners:
2 local:
3 load: galaxy.jobs.runners.local:LocalJobRunner
4 workers: 4
5 drmaa:
6 load: galaxy.jobs.runners.drmaa:DRMAAJobRunner
7 k8s:
8 load: galaxy.jobs.runners.kubernetes:KubernetesJobRunner
9

10 handling:
11 assign:
12 - db-skip-locked
13

14 execution:
15 default: tpv_dispatcher
16 environments:
17 tpv_dispatcher:
18 runner: dynamic
19 type: python
20 function: map_tool_to_destination
21 rules_module: tpv.rules
22 tpv_config_files:
23 - https://github.com/galaxyproject/total-perspective-vortex/raw/main/tpv/tests/

→˓fixtures/mapping-rules.yml
24 - config/tpv_rules_local.yml
25 local:
26 runner: local
27 k8s_environment:
28 runner: k8s
29 docker_enabled: true

3. Add your own custom rules to your local tpv_config_file, following instructions in the next section.

1.3. Configuring Galaxy 15

TotalPerspectiveVortex Documentation, Release 1.2.0

1.3.2 Combining multiple remote and local configs

TPV allows rules to be loaded from remote or local sources.

1 tpv_dispatcher:
2 runner: dynamic
3 type: python
4 function: map_tool_to_destination
5 rules_module: tpv.rules
6 tpv_config_files:
7 - https://usegalaxy.org/shared_rules.yml
8 - config/tpv_rules_australia.yml

The config files listed first are overridden by config files listed later. The normal rules of inheritance apply. This allows
a central database of common rules to be maintained, with individual, site-specific overrides.

1.4 Shell Commands

1.4.1 lint

TPV config files can be checked for linting errors using the tpv lint command.

cd <galaxy_home>
source .venv/bin/activate
pip install --upgrade total-perspective-vortex
tpv lint <url_or_path_to_config_file>

If linting is successful, a lint successful message will be displayed with an exit code of zero. If the linting fails, a lint
failed message with the relevant error will be displayed with an exit code of 1.

1.5 Indices and tables

• genindex

• modindex

• search

16 Chapter 1. Getting Started

	Getting Started
	TPV by example
	Simple configuration
	Default inheritance
	Explicit inheritance
	Scheduling tags
	Rules
	User and Role Handling
	Metascheduling
	Custom contexts
	Multiple matches
	Job Resubmission

	Concepts and Organisation
	Object types
	Operations
	1. Inherit
	2. Combine
	Combining tags
	Combining envs and params

	3. Evaluate
	4. Match
	5. Rank

	Job Dispatch Process
	Expressions
	Default evaluation context
	Custom evaluation contexts
	Special evaluation contexts

	Scheduling
	Tag compatibility table
	Scheduling by tag match
	Scheduling by rules
	Scheduling by custom ranking functions

	Configuring Galaxy
	Simple configuration
	Combining multiple remote and local configs

	Shell Commands
	lint

	Indices and tables

